Advertisements
Advertisements
Question
If `1/(a + ω) + 1/(b + ω) + 1/(c + ω) + 1/(d + ω) = 1/ω`, where a, b, c, d ∈ R and ω is a cube root of unity then `sum 3/(a^2 - a + 1)` is equal to
Options
1
2
3
`1/3`
MCQ
Solution
3
Explanation:
Given that `1/(a + ω) + 1/(b + ω) + 1/(c + ω) + 1/(d + ω) = 1/w` ......(i)
Taking conjugate we get,
`1/(a + ω^2) + 1/(b + ω^2) + 1/(c + ω^2) + 1/(d + ω^2) + 1/ω^2` .....(ii)
Subtract equation (ii) from equation (i) we get
`sum(1/(a + ω) 1/(a + ω^2)) = 1/ω - 1/ω^2`
⇒ `sum 1/((a + ω)(a + ω^2)) = ω^2 - ω`
So `sum 1/(a^2 - a + 1)` = 1
⇒ `sum 3/(a^2 - a + 1)` = 3
shaalaa.com
Is there an error in this question or solution?