Advertisements
Advertisements
Question
If `int1/(x + x^5)dx = f(x) + c`, then `intx^4/(x + x^5)dx` = ______
Options
log x - f(x) + c
f(x) + log x + c
f(x) - log x + c
`1/5x^5 f(x) + c`
MCQ
Fill in the Blanks
Solution
If `int1/(x + x^5)dx = f(x) + c`, then `intx^4/(x + x^5)dx` = log x - f(x) + c
Explanation:
`intx^4/(x + x^5)dx = intx^4/(x(1 + x^4))dx`
= `int((1 + x^4) - 1)/(x(1 + x^4))dx`
= `int1/x dx - int1/(x + x^5)dx = logx - f(x) + c`
shaalaa.com
Indefinite Integration
Is there an error in this question or solution?