English

If 2( X2 + 1 ) = 5x, Find : (I) X - 1/X (Ii) X^3 - 1/X^3 -

Advertisements
Advertisements

Question

If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`

(ii) `x^3 - 1/x^3`

Sum

Solution

(i) 2( x2 + 1 ) = 5x
( x2 + 1 ) = `5/2`x

Dividing by x, we have
`( x^2 + 1 )/x = 5/2`

⇒ `( x + 1/x ) = 5/2`                           .....(1)
Now consider the expansion of  `( x + 1/x )^2` :
`( x + 1/x )^2 = x^2 + 1/x^2 + 2`

⇒ `(5/2)^2 = x^2 + 1/x^2 + 2`                 [From(1)]

⇒ `(5/2)^2 - 2 = x^2 + 1/x^2`

⇒ `25/4 - 2 = x^2 + 1/x^2`

⇒ `x^2 + 1/x^2 = [25 - 8 ]/4`

⇒ `x^2 + 1/x^2 = 17/4`                     ....(2)
Now consider the expansion of `( x - 1/x )^2` :
`( x - 1/x )^2 = x^2 + 1/x^2 - 2`

⇒ `( x - 1/x )^2 = 17/4 - 2`                 [from(2)]

⇒ `( x - 1/x )^2 = [ 17 - 8]/4`

⇒ `( x - 1/x )^2 = 9/4`

⇒ `( x - 1/x )^2 = +- 3/2`                  ....(3)

(ii) We know that,
`( x^3 - 1/x^3 ) = ( x - 1/x )^3 + 3( x - 1/x )`

∴ `( x^3 - 1/x^3 ) = ( +- 3/2 )^3 + 3(+- 3/2)`         [from(3)]

                             = `+- 27/8 + 9/2`

⇒ `( x^3 - 1/x^3 ) = +- [27 + 36]/8`

⇒ `( x^3 - 1/x^3 ) = +- 63/8`

shaalaa.com
Expansion of Formula
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×