Advertisements
Advertisements
Question
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Options
2.00
3.00
4.00
5.00
MCQ
Fill in the Blanks
Solution
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to 4.00.
Explanation:
I = `int{(2(e^x)^4 + (e^x)^3 - 4(e^x)^2 + 4e^x + 2)/(((e^x)^2 + 4)((e^x)^2 - 1)^2)}d(e^x)`
Put ex = t
I = `int ((2t^4 - 4t^2 + 2) + (t^3 + 4t))/((t^2 + 4)(t^2 - 1)^2)dt`
= `int 2/(t^2 + 4) + t/(t^2 - 1)^2 dt`
= `tan^-1(t/2) - 1/(2(t^2 - 1)) + c`
∴ a + b = 4
shaalaa.com
Is there an error in this question or solution?