Advertisements
Advertisements
Question
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
Options
`pi/6, (7pi)/6`
`pi/3, (5pi)/3`
`pi/3, (7pi)/3`
`(-2pi)/3, (-7pi)/3`
MCQ
Fill in the Blanks
Solution
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = `underline(pi/3, (5pi)/3)`.
Explanation:
2sin2θ = 3cosθ
⇒ `2 - 2cos^2theta = 3costheta`
⇒ `2cos^2theta + 3costheta - 2 = 0`
⇒ `costheta = (-3 ± sqrt(9 + 16))/4 + (-3 ± 5)/4`
Neglecting(-) sign, we get
`costheta = 1/2 = cos(pi/3) ⇒ theta = 2npi ± pi/3`
The values of θ between 0 and 2π are `underline(pi/3, (5pi)/3)`.
shaalaa.com
Is there an error in this question or solution?