Advertisements
Advertisements
Question
If (2x + 1) is a factor of 6x3 + 5x2 + ax – 2 find the value of a.
Solution
Let 2x + 1 = 0, then x = `-(1)/(2)`
Substituting the value of x in f(x),
f(x) = 6x3 + 5x2 + ax – 2
`f(-1/2) = 6(-1/2)^3 + 5(-1/2)^2 + a(-1/2) - 2`
= `6(-1/8) + 5(1/4) + a(-1/2) - 2`
= `-(3)/(4) + (5)/(4) - a/(2) - 2`
= `(-3 + 5 - 2a - 8)/(4)`
= `(-6 - 2a)/(4)`
∴ 2x + 1 is a factor of f(x)
∴ Remainder = 0
∴ `(-6 - 2a)/(4)` = 0
⇒ –6 – 2a = 0
⇒ 2a = 6
⇒ a = 3
APPEARS IN
RELATED QUESTIONS
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = 2x3 − x2 − 45, q(x) = x − 3
Prove that (x+ 1) is a factor of x3 - 6x2 + 5x + 12 and hence factorize it completely.
If (x - 2) is a factor of the expression 2x3 + ax2 + bx - 14 and when the expression is divided by (x - 3), it leaves a remainder 52, find the values of a and b.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = 2x3 + 4x + 6 and g(x) = x + 1
By factor theorem, show that (x + 3) and (2x – 1) are factors of 2x2 + 5x – 3.
Show that 2x + 7 is a factor of 2x3 + 5x2 – 11x – 14. Hence factorise the given expression completely, using the factor theorem.
If (x + 2) and (x – 3) are factors of x3 + ax + b, find the values of a and b. With these values of a and b, factorise the given expression.
If (2x – 3) is a factor of 6x2 + x + a, find the value of a. With this value of a, factorise the given expression.
If x – 3 is a factor of x2 + kx + 15; the value of k is ______.
If mx2 – nx + 8 has x – 2 as a factor, then ______.