Advertisements
Advertisements
Question
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2
Sum
Solution
2x = `y^(1/m) + y^(-1/m)`
Differentiating w.r.t.x,
2 = `1/my^(1/m - 1).dy/dx + (-1/m)y^(1/m - 1).dy/dx`
∴ 2 = `1/my^-1(y^(1/m) - y^(-1/m)).dy/dx`
∴ 2 = `1/(my) dy/dx(y^(1/m) - y^(-1/m))`
∴ 2my = `dy/dx(y^(1/m) - y^(-1/m))`
∴ 2my = `dy/dx sqrt((y^(1/m) + y^(1/m))^2 - 4)`
∴ 2my = `dy/dx sqrt((2x)^2 - 4)`
Squaring both sides
4m2y2 = `(dy/dx)^2 (4x^2 - 4)`
∴ 4m2y2 = `(dy/dx)^2 . 4(x^2 - 1)`
∴ `(x^2 - 1)(dy/dx)^2` = m2y2
Hence proved.
shaalaa.com
Formation of Differential Equations
Is there an error in this question or solution?