Advertisements
Advertisements
Question
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
Options
`sqrt3`
`1/sqrt3`
`-1/sqrt3`
`-sqrt3/4`
Solution
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to `underline(1/sqrt3)`.
Explanation:
Given, `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`
Putting x = tan θ, we get
`3sin^-1((2tantheta)/(1 + tan^2theta)) - 4cos^-1((1 - tan^2theta)/(1 + tan^2theta)) + 2tan^-1((2tantheta)/(1 - tan^2theta)) = pi/3`
⇒ `3sin^-1(sin2theta) - 4cos^-1(cos2theta) + 2tan^-1(tan2theta) = pi/3`
⇒ `3(2theta) - 4(2theta) + 2(2theta) = pi/3`
⇒ `6theta - 8theta + 4theta = pi/3`
⇒ `2theta = pi/3`
⇒ `theta = pi/6`
⇒ `tan^-1x = pi/6`
⇒ `x = tan pi/6`
⇒ `x = 1/sqrt3`