English

If (4x² + xy) : (3xy – y²) = 12 : 5, find (x + 2y) : (2x + y). - Mathematics

Advertisements
Advertisements

Question

 If (4x² + xy) : (3xy – y²) = 12 : 5, find (x + 2y) : (2x + y).

Sum

Solution

(4x² + xy) : (3xy – y²) = 12 : 5

⇒ `(4x^2 + xy)/(3xy - y^2) = (12)/(5)`
⇒ 20x² + 5xy = 36xy – 12y²
⇒ 20x² + 5xy – 36xy + 12y² = 0

⇒ `(20x^2)/y^2 - (31xy)/y^2 + (12y^2)/y^2` = 0 ...(Dividing by y2)

⇒ `20(x/y)^2 - 31(x /y) + 12` = 0

⇒ `20(x/y)^2 - 15(x /y) -16(x/y) + 12` = 0

⇒ `5(x/y)[4(x/y) -3] -4[4(x/y) -3]` = 0

⇒ `[4(x/y) -3][5(x/y) -4]` = 0

Either `4(x/y) -3` = 0,
then `4(x/y)` = 3

⇒ `x/y = (3)/(4)`

or `5(x/y) -4 ` = 0,

then `5(x/y)` = 4

⇒ `x/y = (4)/(5)`

Now `(x + 2y)/(2x + y) = (x/y + 2)/(2x/y + 1)` ...(Dividing by y)

(a) When `x/y = (3)/(4)`, then

= `(x/y + 2)/(2x/y + 1)`

= `(3/4 + 2)/(2 xx 3/4 + 1)`

= `(11/4)/(3/2 + 1)`

= `(11/4)/(5/2)`

= `(11)/(4) xx (2)/(5)`

= `(11)/(10)`
∴ (x + 2y) : (2x + y) = 11 : 10

(b) When `x/y = (4)/(5)`, then

`(x + 2y)/(2x + y)`

= `(x/y + 2)/(2x/y + 1)`

= `(4/5 + 2)/(2 x 4/5 + 1)`

= `(14/5)/(8/5 + 1)`   ...(Dividing by y)

= `(14/5)/(13/5)`

= `(14)/(5) xx (5)/(13)`

= `(14)/(13)`

Hence `(x + 2y)/(x2 + y)`

= `(11)/(10) or (14)/(13)`

∴ `(x + 2y)/(2x + y)`
= 11 : 10 or 14 : 13.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Ratio and Proportion - Exercise 7.1

APPEARS IN

ML Aggarwal Understanding ICSE Mathematics [English] Class 10
Chapter 7 Ratio and Proportion
Exercise 7.1 | Q 12.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×