Advertisements
Advertisements
Question
If A = `[(0, -tan θ/2),(tan θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______.
Options
11
12
13
14
MCQ
Fill in the Blanks
Solution
If A = `[(0, -tan θ/2),(tan θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to 13.
Explanation:
I2 + A = `[(1, -tan θ/2),(tan θ/2, 1)]` I2 – A = `[(1, tan θ/2),(-tan θ/2, 1)]` ...(i)
`\implies` (I2 – A)–1 = `1/(1 + tan^2 θ/2) [(1, -tan θ/2),(tan θ/2, 1)] ` ...(ii)
Now, (I2 + A) (I2 – A)–1
= `1/(1 + tan^2 θ/2) [(1 - tan^2 θ/2 , -2 tan θ/2),(2 tan θ/2, 1 - tan^2 θ/2)] `
= `[(cosθ, -sinθ),(sinθ, cosθ)]`
= `[(a, -b),(b, a)]`
On comparing
a = cosθ and b = sinθ, then 13(a2 + b2) = 13.
shaalaa.com
Is there an error in this question or solution?