Advertisements
Advertisements
Question
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.
Options
2010
2020
2030
2040
MCQ
Fill in the Blanks
Solution
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to 2020.
Explanation:
An = `[(1, n, (n(n + 1))/2),(0, 1, n),(0, 0, 1)]`
Since, `sum1 = 20, sum_(n = 1)^20n = (20 xx 21)/2` = 210
and `1/2sum_(n = 1)^20n(n + 1) = 1/2 xx (20 xx 21 xx 22)/3` = 1540
∴ M = A + A2 + .......... + A20
= `[(sum1, sumn, sum(n(n + 1))/2),(0, sum1, sumn),(0, 0, sum1)]`
= `[(20, 210, 1540),(0, 20, 210),(0, 0, 20)]`
∴ Sum of all the elements of M = 20 + 20 + 20 + 210 + 210 + 1540 = 2020
shaalaa.com
Is there an error in this question or solution?