Advertisements
Advertisements
Question
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
Options
`[(1/sqrt(5), -2021),(2021, 1/sqrt(5))]`
`[(1, 0),(2021i, 1)]`
`[(1, 0),(-2021i, 1)]`
`[(1, -2021i),(0, 1)]`
Solution
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to `underlinebb([(1, 0),(-2021i, 1)])`.
Explanation:
Given A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`
Now, AAT = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))][(1/sqrt(5), (-2)/sqrt(5)), (2/sqrt(5), 1/sqrt(5))]`
= `[(1, 0),(0, 1)]` = I ...(i)
Given Q = ATBA
So, Q2 = (ATBA)(ATBA) = ATB2A
⇒ Q3 = ATB3A
⇒ Q2021 = ATB2021A
Now, let P = AQ2021AT
⇒ P = A(ATB2021A)AT
Since AAT = I ...[From (i)]
⇒ P = B2021
Now, B2 = `[(1, 0),(i, 1)][(1, 0),(i, 1)] = [(1, 0),(2i, 1)]`
B3 = `[(1, 0),(2i, 1)][(1, 0),(i, 1)] = [(1, 0),(3i, 1)]`
So, B2021 = `[(1, 0),(2021i, 1)]`
Inverse of P = (P–1) = (B2021)–1 = `[(1, 0),(-2021i, 1)]`