English

If A = (1525-2515), B = (10i1), i = -1 and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______. -

Advertisements
Advertisements

Question

If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.

Options

  • `[(1/sqrt(5), -2021),(2021, 1/sqrt(5))]`

  • `[(1, 0),(2021i, 1)]`

  • `[(1, 0),(-2021i, 1)]`

  • `[(1, -2021i),(0, 1)]`

MCQ
Fill in the Blanks

Solution

If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to `underlinebb([(1, 0),(-2021i, 1)])`.

Explanation:

Given A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`

Now, AAT = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))][(1/sqrt(5), (-2)/sqrt(5)), (2/sqrt(5), 1/sqrt(5))]` 

= `[(1, 0),(0, 1)]` = I  ...(i)

Given Q = ATBA

So, Q2 = (ATBA)(ATBA) = ATB2A

⇒ Q3 = ATB3A

⇒ Q2021 = ATB2021A

Now, let P = AQ2021AT

⇒ P = A(ATB2021A)AT

Since AAT = I   ...[From (i)]

⇒ P = B2021

Now, B2 = `[(1, 0),(i, 1)][(1, 0),(i, 1)] = [(1, 0),(2i, 1)]`

B3 = `[(1, 0),(2i, 1)][(1, 0),(i, 1)] = [(1, 0),(3i, 1)]`

So, B2021 = `[(1, 0),(2021i, 1)]`

Inverse of P = (P–1) = (B2021)–1 = `[(1, 0),(-2021i, 1)]`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×