English

If A = [1tanx-tanx1], then AT A–1 = ______. -

Advertisements
Advertisements

Question

If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.

Options

  • `[(-cos2x, sin2x),(-sin2x, cos2x)]`

  • `[(cos2x, -sin2x),(sin2x, cos2x)]`

  • `[(cos2x, sin2x),(sin2x, cos2x)]`

  • `[(tanx, 1),(-1, tanx)]`

MCQ
Fill in the Blanks

Solution

If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = `[(cos2x, -sin2x),(sin2x, cos2x)]`.

Explanation:

AT = `[(1, tanx),(-tanx, 1)]`

A–1 = `([(1, - tanx),(tanx, 1)])/(1 + tan^2x)`

∴ AT A–1 = `1/(1 + tan^2x) [(1 - tan^2x, -2tanx),(2tanx, 1 - tan^2x)]`

= `[((1 - tan^2x)/(1 + tan^2x) (-2tanx)/(1 + tan^2x)),(((2tanx)/(1 + tan^2x), (1 - tan^2x)/(1 + tan^2x)))]`

= `[(cos2x, - sin2x),(sin2x, cos2x)]`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×