Advertisements
Advertisements
Question
If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.
Sum
Solution
AX = B
∴ `[(3, -1),(4, 2)] X = [(2),(-1)]`
By `R_2 → R_2 - R_1`
`[(3, -1),(1, 3)] X = [(2),(-3)]`
By `R_1 ↔ R_2`
`[(1, 3),(3, -1)] X = [(-3),(2)]`
By `R_2 -> R_2 - 3R_1`
`[(1, 3),(0, -10)] X = [(-3),(11)]`
By `R_2 → -1/10 R_2`
`[(1, 3),(0, 1)] X = [(-3),(-11/10)]`
By `R_1 → R_1 - 3R_2`
`[(1, 0),(0, 1)] X = [(3/10),(-11/10)]`
∴ X = `[(3/10),(-11/10)]`
shaalaa.com
Elementry Transformations
Is there an error in this question or solution?