Advertisements
Advertisements
Question
If `bara` and `barb` are unit vectors, then the angle between `bara` and `barb` for `(sqrt(3)bara - barb)` be a unit vector, is ______.
Options
90°
60°
45°
30°
MCQ
Fill in the Blanks
Solution
If `bara` and `barb` are unit vectors, then the angle between `bara` and `barb` for `(sqrt(3)bara - barb)` be a unit vector, is 30°.
Explanation:
`|sqrt(3)bara - barb|` = 1
∴ `|sqrt(3)bara - barb|^2` = 1
∴ `(sqrt(3)bara - barb)*(sqrt(3)bara - barb)` = 1
∴ `3a^2 - 2sqrt(3)bara*barb + b^2` = 1
∴ 3 + 1 = `1 + 2sqrt(3)bara*barb`
∴ `bara*barb = 3/(2sqrt(3)) = sqrt(3)/2`
∴ ab cos θ = `sqrt(3)/2`
∴ cos θ = `sqrt(3)/2` ...(∵ `bara` and `barb` are unit vectors)
∴ θ = 30°
shaalaa.com
Scalar Product of Vectors (Dot)
Is there an error in this question or solution?