Advertisements
Advertisements
Question
If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then
Options
9ac – 9a2 – 2c2 < 0
6ac + 9a2 – 2c2 < 0
9ac – 9a2 – 2c2 > 0
6ac + 9a2 – 2c2 > 0
MCQ
Solution
9ac – 9a2 – 2c2 > 0
Explanation:
Radius = 3a
Length of major axis = 4c
Now, (Radius) < (Half of the length of major axis)
3a < 2c
9a2 < 4c2
9ac – 9a2 > 9ac – 4c2
9ac – 9a2 – 2c2 > 9ac – 6c2 ......(i)
Again 3a < 2c
⇒ 9ac < 6c2
⇒ 9ac – 6c2 < 0 ......(ii)
From (i) and (ii),
9ac – 9a2 – 2c2 > 0
shaalaa.com
Is there an error in this question or solution?