Advertisements
Advertisements
Question
If `veca + vecb, vecb + vecc` and `vecc + veca` are coterminous edges of a parallelepiped then its volume is ______.
Options
`3[(veca, vecc, vecb)]`
0
`2[(veca, vecb, vecc)]`
`4[(vecb, veca, vecc)]`
Solution
If `veca + vecb, vecb + vecc` and `vecc + veca` are coterminous edges of a parallelepiped then its volume is `underlinebb(2[(veca, vecb, vecc)])`.
Explanation:
∵ `veca + vecb, vecb + vecc` and `vecc + veca` are coterminous edges of a parallelepiped.
Then, its volume (v) = `[(veca + vecb, vecb + vecc, vecc + veca)]`
We know, scalar triple product
`[(veca, vecb, vecc)] = veca.(vecb xx vecc) ≡ (veca xx vecb).vecc`
Consider `[(veca + vecb, vecb + vecc, vecc + veca)]`
= `(veca + vecb).{(vecb + vecc) xx (vecc + veca)}`
= `(veca + vecb).{(vecb xx vecc) + (vecb xx veca) + (vecc xx vecc) + (vecc xx veca)}`
= `(veca + vecb).{(vecb xx vecc) + (vecb xx veca) + (vecc xx veca)}` ...`(∵ vecc xx vecc = 0)`
= `veca.(vecb xx vecc) + veca.(vecb xx veca) + veca.(vecc xx veca) + vecb.(vecb xx vecc) + vecb.(vecb xx veca) + vecb.(vecc xx veca)`
= `[(veca, vecb, vecc)] + [(veca, vecb, veca)] + [(veca, vecc, veca)] + [(vecb, vecb, vecc)] + [(vecb, vecb, veca)] + [(vecb, vecc, veca)]`
= `[(veca, vecb, vecc)] + [(vecb, vecc, veca)]`
= `2[(veca, vecb, vecc)]`