Advertisements
Advertisements
Question
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.
Options
4 sin A sin B sin C
4 cos A cos B cos C
1 – 4 sin A sin B sin C
1 – 4 cos A cos B cos C
MCQ
Fill in the Blanks
Solution
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to 1 – 4 sin A sin B sin C.
Explanation:
cos 2A + cos 2B + cos 2C
= 2 cos (A + B) cos (A – B) + 1 – 2 sin2 C
= `2 cos ((3π)/2 - C) cos (A - B) + 1 - 2 sin^2 C` ...`[∵ A + B + C = 270^circ \implies B + A = (3π)/2 - C]`
= 1 – 2 sin C [cos (A – B) + sin C]
= 1 – 2 sin C [cos (A – B) – cos (A + B)]
= 1 – 4 sin A sin B sin C
shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
Is there an error in this question or solution?