Advertisements
Advertisements
Question
If `bara + barb = barc, |bara| = sqrt(5), |barb| = sqrt(2), |barc|` = 3, then the angle between `barb` and `barc` is ______.
Options
30°
45°
60°
90°
MCQ
Fill in the Blanks
Solution
If `bara + barb = barc, |bara| = sqrt(5), |barb| = sqrt(2), |barc|` = 3, then the angle between `barb` and `barc` is 45°.
Explanation:
`bara + barb = barc`
∴ `bara = barc - barb`
Squaring both sides
`|bara|^2 = |barc - barb|^2`
∴ `|bara|^2 = (barc - barb)*(barc - barb)`
∴ `|bara|^2 = |barc|^2 - 2barc*barb + |barb|^2`
∴ 5 = `9 - 2barc*barb + 2`
∴ `2barc*barb` = 6,
∴ `barc*barb` = 3
∴ `|barc|*|barb|cosθ` = 3, ...(θ is the angle between `barc` and `barb`)
`3sqrt(2)cosθ` = 3
∴ cos θ = `1/sqrt(2)`
∴ θ = 45°
shaalaa.com
Scalar Product of Vectors (Dot)
Is there an error in this question or solution?