Advertisements
Advertisements
Question
If `overline(a),overline(b),overline(c)` are non-coplanar vectors and λ is a real number then `[lambda(overline(a)+overline(b))lambda^2overline(b) lambda overline(c)]=[overline(a) overline(b)+overline(c) overline(b)]` for ______.
Options
exactly three values of λ
exactly two values of λ
exactly one value of λ
no value of λ
Solution
If `overline(a),overline(b),overline(c)` are non-coplanar vectors and λ is a real number then `[lambda(overline(a)+overline(b))lambda^2overline(b) lambda overline(c)]=[overline(a) overline(b)+overline(c) overline(b)]` for no value of λ.
Explanation:
`[lambda(overline(a)+overline(b))lambda^2overline(b) lambda overline(c)]=[overline(a) overline(b)+overline(c) overline(b)]`
`=> lambda^4[overline(a)+overline(b) overline(b) overline(c)]=[overline(a) overline(b)+overline(c) overline(b)]`
`=>lambda^4{[overline(a) overline(b) overline(c)]+[overline(b) overline(b) overline(c)]}={[overline(a) overline(b) overline(b)]+[overline(a) overline(c) overline(b)]}`
`=>lambda^4[overline(a) overline(b) overline(c)]=-[overline(a) overline(b) overline(c)]`
`=>(lambda^4+1)[overline(a) overline(b) overline(c)]=0`
But, `[overline(a) overline(b) overline(c)] ne0`
`thereforelambda^4+1=0`
This is not true for any real value of λ.