English

If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and |b2+c2abacabc2+a2bcacbca2+b2| = ka2b2c2, then k is equal to ______. -

Advertisements
Advertisements

Question

If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.

Options

  • 1

  • 3

  • 4

  • 2

MCQ
Fill in the Blanks

Solution

If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to 4.

Explanation:

Let Δ = `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|`

Multiply C1 by a, C2 by b and C3 by c and hence divide by abc.

= `1/(abc)|(a(b^2 + c^2), ab^2, ac^2),(a^2b, b(c^2 + a^2), bc^2),(a^2c, b^2c, c(a^2 + b^2))|`

Take out a, b, c common from R1, R2 and R3 respectively.

∴ Δ = `(abc)/(abc)|(b^2 + c^2, b^2, c^2),(a^2, c^2 + a^2, c^2),(a^2, b^2, a^2 + b^2)|`

Applying C1 `rightarrow` C1 – C2 – C3

Δ = `|(0, b^2, c^2),(-2c^2, c^2 + a^2, c^2),(-2b^2, b^2, a^2 + b^2)|`

=  `-2|(0, b^2, c^2),(c^2, c^2 + a^2, c^2),(b^2, b^2, a^2 + b^2)|`

Applying C2 `rightarrow` C2 – C1 and C3 `rightarrow` C3 – C1

= `-2|(0, b^2, c^2),(c^2, a^2, 0),(b^2, 0, a^2)|`

= –2[–b2(c2a2) + c2(–a2b2)]

= 2a2b2c2 + 2a2b2c2

= 4a2b2c2 

But Δ = ka2b2c2

∴ k = 4

shaalaa.com
Determinants
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×