Advertisements
Advertisements
Question
If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to ______.
Options
1
3
4
2
Solution
If a, b, c, are non zero complex numbers satisfying a2 + b2 + c2 = 0 and `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|` = ka2b2c2, then k is equal to 4.
Explanation:
Let Δ = `|(b^2 + c^2, ab, ac),(ab, c^2 + a^2, bc),(ac, bc, a^2 + b^2)|`
Multiply C1 by a, C2 by b and C3 by c and hence divide by abc.
= `1/(abc)|(a(b^2 + c^2), ab^2, ac^2),(a^2b, b(c^2 + a^2), bc^2),(a^2c, b^2c, c(a^2 + b^2))|`
Take out a, b, c common from R1, R2 and R3 respectively.
∴ Δ = `(abc)/(abc)|(b^2 + c^2, b^2, c^2),(a^2, c^2 + a^2, c^2),(a^2, b^2, a^2 + b^2)|`
Applying C1 `rightarrow` C1 – C2 – C3
Δ = `|(0, b^2, c^2),(-2c^2, c^2 + a^2, c^2),(-2b^2, b^2, a^2 + b^2)|`
= `-2|(0, b^2, c^2),(c^2, c^2 + a^2, c^2),(b^2, b^2, a^2 + b^2)|`
Applying C2 `rightarrow` C2 – C1 and C3 `rightarrow` C3 – C1
= `-2|(0, b^2, c^2),(c^2, a^2, 0),(b^2, 0, a^2)|`
= –2[–b2(c2a2) + c2(–a2b2)]
= 2a2b2c2 + 2a2b2c2
= 4a2b2c2
But Δ = ka2b2c2
∴ k = 4