English

If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______. -

Advertisements
Advertisements

Question

If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.

Options

  • 1

  • 2

  • 3

  • 4

MCQ
Fill in the Blanks

Solution

If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to 2.

Explanation:

sin2 A + sin2 B + sin2 C

= 1 – cos2 A + 1 – cos2 B + sin2 C

= 2 – cos2 A – cos(B + C) cos(B – C)

= 2 – cos A[cos A – cos(B – C)]

= 2 – cos A[– cos(B + C) – cos(B – C)

= 2 + cos A . 2 cos B cos C

∴ sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C = 2

shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×