English

If a→,b→,c→ are three non-coplanar vectors, then the value of a→.(b→×c→)(c→×a→).b→+b→.(a→×c→)c→.(a→×b→) is ______. -

Advertisements
Advertisements

Question

If `veca, vecb, vecc` are three non-coplanar vectors, then the value of `(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb))` is ______.

Options

  • 0

  • 2

  • 1

  • None of these

MCQ
Fill in the Blanks

Solution

If `veca, vecb, vecc` are three non-coplanar vectors, then the value of `(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb))` is 0.

Explanation:

By definition of scalar triple product

`veca.(vecb xx vecc)` can be written as `[(veca, vecb, vecc)]`

`(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb)) = ([(veca, vecb, vecc)])/([(vecc, veca, vecb)]) + ([(vecb, veca, vecc)])/([(vecc, veca, vecb)])`

= `([(veca, vecb, vecc)])/([(veca, vecb, vecc)]) - ([(veca, vecb, vecc)])/([(veca, vecb, vecc)])` = 1 – 1 = 0

∵ `[(veca, vecb, vecc)] = [(vecb, vecc, veca)] = [(vecc, veca, vecb)]`

but `[(vecb, veca, vecc)] = -[(veca, vecb, vecc)]`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×