Advertisements
Advertisements
Question
If `veca, vecb, vecc` are three non-coplanar vectors, then the value of `(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb))` is ______.
Options
0
2
1
None of these
Solution
If `veca, vecb, vecc` are three non-coplanar vectors, then the value of `(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb))` is 0.
Explanation:
By definition of scalar triple product
`veca.(vecb xx vecc)` can be written as `[(veca, vecb, vecc)]`
`(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb)) = ([(veca, vecb, vecc)])/([(vecc, veca, vecb)]) + ([(vecb, veca, vecc)])/([(vecc, veca, vecb)])`
= `([(veca, vecb, vecc)])/([(veca, vecb, vecc)]) - ([(veca, vecb, vecc)])/([(veca, vecb, vecc)])` = 1 – 1 = 0
∵ `[(veca, vecb, vecc)] = [(vecb, vecc, veca)] = [(vecc, veca, vecb)]`
but `[(vecb, veca, vecc)] = -[(veca, vecb, vecc)]`