Advertisements
Advertisements
Question
If A, B, C, D are four non-collinear points in the plane such that `bar(AD)+bar( BD)+bar( CD)=bar O` then prove that point D is the centroid of the ΔABC.
Solution
Let `bar a , bar b , bar c , bar d` be the position vectors of points A, B, C, D respectively
`bar(AD)+bar(BD)+bar(CD)=barO`
`(bard-bara)+(bard-barb)+(bard-barc)=barO`
`3bard-(bara+barb+barc)=barO`
`3bard=bara+barb+barc`
`bard=(bara+barb+barc)/3`
`bard` represents centroid of the triangle.
Point D is the centroid of the ΔABC.
shaalaa.com
Is there an error in this question or solution?