English

If a : B = C : D, Show that (A - C) B2 : (B - D) Cd = (A2 - B2 - Ab) : (C2 - D2 - Cd). - Mathematics

Advertisements
Advertisements

Question

If a : b = c : d, show that (a - c) b2 : (b - d) cd = (a2 - b2 - ab) : (c2 - d2 - cd).

Sum

Solution

Let `a/b = c/d = k`
⇒ a = bk and c = dk
L.H.S.
= `((a - c)b^2)/((b - d) cd) = ((bk - dk) b^2)/((b - d) dk.d)`
= `(b^2k (b -d))/(d2k (b -d)) = b^2/d^2`
R.H.S.
= `(a^2 - b^2 - ab)/(c^2 - d^2 - cd)`
= `(b^2k^2 - b^2 - bk·b)/(d^2k^2 - d^2 - dk·d)`
= `(b^2 (k^2 - k - 1))/(d^2 (k^2 - k - 1)`
= `b^2/d^2`
L.H.S. = R.H.S.
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Ratio and Proportion - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 8 Ratio and Proportion
Exercise 2 | Q 18
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×