Advertisements
Advertisements
Question
If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.
Options
1
2
0
3
MCQ
Fill in the Blanks
Solution
If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to 1.
Explanation:
cos2 A + cos2 B + cos2 C
= `(1 + cos 2A)/2 + (1 + cos 2B)/2 + cos^2 C`
= `1 + 1/2 (cos 2A + cos 2B) + cos^2 C`
= `1 + 2/2 [cos(A + B) cos(A - B) + cos^2 C`
= 1 + cos C cos (A – B) + cos C cos (A + B)
= 1 + cos C [cos (A – B) + cos (A + B)]
= 1 + 2 cos C cos B cos A
`\implies` cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C = 1
shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
Is there an error in this question or solution?