Advertisements
Advertisements
Question
If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to ______.
Options
4 sin A sin B sin C
4 cos A cos B cos C
2 cos A cos B cos C
2 sin A sin B sin C
MCQ
Fill in the Blanks
Solution
If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to 4 sin A sin B sin C.
Explanation:
B + C = π – A
`\implies` sin (B + C) = sin (π – A) = sin A
∴ sin 2A + sin 2B + sin 2C
= 2 sin A cos A + 2 sin (B + C) cos (B – C)
= 2 sin A [cos A + cos (B – C)]
= 2 sin A [cos (B – C) – cos (B + C)]
= 2 sin A [2 sin B sin C]
= 4 sin A sin B sin C
shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
Is there an error in this question or solution?