Advertisements
Advertisements
Question
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Options
2
`sqrt(3)`
`sqrt(5)`
1
MCQ
Fill in the Blanks
Solution
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to `underlinebb(sqrt(5))`.
Explanation:
Given equation is `z + sqrt(2)|z + 1| + i` = 0
Put z = x + iy in the given equation.
`(x + iy) + sqrt(2)|x + iy + 1| + i` = 0
⇒ `x + iy + sqrt(2)[sqrt((x + 1)^2 + y^2)] + i` = 0
Now, equating real and imaginary part, we get
`x + sqrt(2) sqrt((x + 1)^2 + y^2` = 0 and y + 1 = 0
⇒ y = –1
⇒ `x + sqrt(2)sqrt((x + 1)^2 + (-1)^2` = 0 ...(∵ y = –1)
⇒ `sqrt(2)sqrt((x + 1)^2 + 1)` = –x
⇒ 2[(x + 1)2 + 1] = x2
⇒ x2 + 4x + 4 = 0
⇒ x = –2
Thus, z = –2 + i(–1)
⇒ |z| = `sqrt(5)`
shaalaa.com
Is there an error in this question or solution?