English

If a complex number z satisfies the equation z+2|z+1|+i = 0, then |z| is equal to ______. -

Advertisements
Advertisements

Question

If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.

Options

  • 2

  • `sqrt(3)`

  • `sqrt(5)`

  • 1

MCQ
Fill in the Blanks

Solution

If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to `underlinebb(sqrt(5))`.

Explanation:

Given equation is `z + sqrt(2)|z + 1| + i` = 0

Put z = x + iy in the given equation.

`(x + iy) + sqrt(2)|x + iy + 1| + i` = 0

⇒ `x + iy + sqrt(2)[sqrt((x + 1)^2 + y^2)] + i` = 0

Now, equating real and imaginary part, we get

`x + sqrt(2) sqrt((x + 1)^2 + y^2` = 0 and y + 1 = 0

⇒ y = –1

⇒ `x + sqrt(2)sqrt((x + 1)^2 + (-1)^2` = 0  ...(∵ y = –1)

⇒ `sqrt(2)sqrt((x + 1)^2 + 1)` = –x

⇒ 2[(x + 1)2 + 1] = x2

⇒ x2 + 4x + 4 = 0

⇒ x = –2

Thus, z = –2 + i(–1) 

⇒ |z| = `sqrt(5)`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×