Advertisements
Advertisements
Question
If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2) l_2` where AT is transpose of A.
Options
`π/2`
`π/4`
`π/6`
`π/3`
Solution
`bb(π/4)`
Explanation:
Given, A = `[(cos α, sin α),(-sin α, cos α)]`
Also given, A + AT = `sqrt(2) l_2`
∴ `[(cos α, sin α),(- sin α, cos α)] + [(cos α, sin α),(- sin α, cos α)]^T = sqrt(2)[(1, 0),(0, 1)]`
`\implies [(cos α, sin α),(- sin α, cos α)] + [(cos α, - sin α),(sin α, cos α)] = [(sqrt(2), 0),(0, sqrt(2))]`
= `[(cos α + cos α, sin α - sin α),(- sin α + sin α, cos α + cos α)]`
= `[(sqrt(2), 0),(0, sqrt(2))]`
`\implies [(2 cos α, 0),(0, 2 cos α)] = [(sqrt(2), 0),(0, sqrt(2))]`
On equating the corresponding elements, we get
2 cos α = `sqrt(2)`
`\implies` cos α = `sqrt(2)/2`
`\implies` cos α = `1/sqrt(2)`
∴ α = `π/4`, which is satisfying `0 < α < π/2`.