Advertisements
Advertisements
Question
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.
Options
symmetric matrix
skew-symmetric matrix
identity matrix
orthogonal matrix
MCQ
Fill in the Blanks
Solution
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is orthogonal matrix.
Explanation:
Here, A = `[(cos α, sin α),(- sin α, cos α)]`
Now, transpose of A
A' = `[(cos α, - sin α),(sin α, cos α)]`
A'.A = `[(cos α, - sin α),(sin α, cos α)][(cos α, sin α),(- sin α, cos α)]`
= `[(cos^2 α + sin^2 α, cos α . sin α - sin α . cos α),(sin α . cos α - cos α . sin α, sin^2 α + cos^2 α)]`
= `[(1, 0),(0, 1)]`
= I
So, A is an orthogonal matrix.
shaalaa.com
Is there an error in this question or solution?