Advertisements
Advertisements
Question
If Aα = `[(cosα, sinα),(-sinα, cosα)]`, then which of following statement is TRUE?
Options
Aα.Aβ = Aαβ and (Aα)n = `[(cos^nα, sin^nα),(-sin^nα, cos^nα)]`
Aα.Aβ = Aαβ and (Aα)n = `[(cosnα, sinnα),(-sinnα, cosnα)]`
Aα.Aβ = Aα+β and (Aα)n = `[(cos^nα, sin^nα),(-sin^nα, cos^nα)]`
Aα.Aβ = Aα+β and (Aα)n = `[(cosnα, sinnα),(-sinnα, cosnα)]`
MCQ
Solution
`bb(A_α.A_β = A_(α+β) and (A_α)^n = [(cosnα, sinnα),(-sinnα, cosnα)])`
Explanation:
Aα = `[(cosα, sinα),(-sinα, cosα)]`
Aα.Aβ = `[(cosα, sinα),(-sinα, cosα)][(cosβ, sinβ),(-sinβ, cosβ)]`
= `[(cosαcosβ - sinαsinβ, cosαsinβ + sinαcosβ),(-sinαcosβ - cosαsinβ, -sinαsinβ + cosαcosβ)]`
= `[(cos(α + β), sin(a + β)),(-sin(α + β), cos(α + β))]`
= A(α+β)
Also, (Aα)n = `[(cosnα, sinnα),(-sinnα, cosnα)]`
shaalaa.com
Matrices
Is there an error in this question or solution?