English

If Aα = αααα[cosαsinα-sinαcosα], then which of following statement is TRUE? -

Advertisements
Advertisements

Question

If Aα = `[(cosα, sinα),(-sinα, cosα)]`, then which of following statement is TRUE?

Options

  • Aα.Aβ = Aαβ and (Aα)n = `[(cos^nα, sin^nα),(-sin^nα, cos^nα)]`

  • Aα.Aβ = Aαβ and (Aα)n = `[(cosnα, sinnα),(-sinnα, cosnα)]`

  • Aα.Aβ = Aα+β and (Aα)n = `[(cos^nα, sin^nα),(-sin^nα, cos^nα)]`

  • Aα.Aβ = Aα+β and (Aα)n = `[(cosnα, sinnα),(-sinnα, cosnα)]`

MCQ

Solution

`bb(A_α.A_β = A_(α+β) and (A_α)^n = [(cosnα, sinnα),(-sinnα, cosnα)])`

Explanation:

Aα = `[(cosα, sinα),(-sinα, cosα)]`

Aα.Aβ = `[(cosα, sinα),(-sinα, cosα)][(cosβ, sinβ),(-sinβ, cosβ)]`

= `[(cosαcosβ - sinαsinβ, cosαsinβ + sinαcosβ),(-sinαcosβ - cosαsinβ, -sinαsinβ + cosαcosβ)]`

= `[(cos(α + β), sin(a + β)),(-sin(α + β), cos(α + β))]`

= A(α+β)

Also, (Aα)n = `[(cosnα, sinnα),(-sinnα, cosnα)]`

shaalaa.com
Matrices
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×