English

If a→=i^+2j^+3k^,b→=2i^+3j^+k^,c→=3i^+j^+2k^ and αβγαa→+βb→+γc→=-3(i^-k^), then the ordered triplet (α, β, γ) is ______. -

Advertisements
Advertisements

Question

If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is ______.

Options

  • (2, –1, –1)

  • (–2, 1, 1)

  • (–2, –1, 1)

  • (2, 1, –1)

MCQ
Fill in the Blanks

Solution

If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is (2, –1, –1).

Explanation:

Equating the components in

`α(hati + 2hatj + 3hatk) + β(2hati + 3hatj + hatk) + γ(3hati + hatj + 2hatk)`

= `-3(hati - hatk)`, we have

α + 2β + 3γ = –3  ....(i)

2α + 3β + γ = 0  .....(ii)

3α + β + 2γ = 3  .....(iii)

Solving the equations (i), (ii), and (iii), we get

α = 2, β = –1, γ = –1.

shaalaa.com
Vector Triple Product
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×