Advertisements
Advertisements
Question
If a = sin θ + cos θ, b = sin3 θ + cos3 θ, then ______.
Options
a3 – 3a + 2b = 0
a3 + 3a + 2b = 0
a3 – 3a – 2b = 0
a3 + 3a – 2b = 0
MCQ
Fill in the Blanks
Solution
If a = sin θ + cos θ, b = sin3 θ + cos3 θ, then a3 – 3a + 2b = 0.
Explanation:
Given, a = sin θ + cos θ
and b = sin3 θ + cos3 θ
So, a3 = sin3 θ + cos3 θ + 3 sin θ cos θ (sin θ + cos θ)
and 3a = 3(sin θ + cos θ)
a3 – 3a = sin3 θ + cos3 θ + 3 sin θ cos θ (sin θ + cos θ) – 3 (sin θ + cos θ)
= sin3 θ + cos3 θ + 3 (sin θ + cos θ) (sin θ cos θ – 1)
= sin3 θ + cos3 θ – 3 (sin θ + cos θ) (1 – sin θ cos θ)
= sin3 θ + cos3 θ – 3(sin θ + cos θ)(sin2 θ + cos2 θ – sin θ . cos θ) ...[using identity, a3 + b3 = (a + b)(a2 + b2 – ab)]
= sin3 θ + cos3 θ – 3 (sin3 θ + cos3 θ)
= – 2 (sin3 θ + cos3 θ)
`\implies` a3 – 3a = – 2b or a3 – 3a + 2b = 0
shaalaa.com
Trigonometric Equations and Their Solutions
Is there an error in this question or solution?