English

If a = sin θ + cos θ, b = sin3 θ + cos3 θ, then ______. -

Advertisements
Advertisements

Question

If a = sin θ + cos θ, b = sin3 θ + cos3 θ, then ______.

Options

  • a3 – 3a + 2b = 0

  • a3 + 3a + 2b = 0

  • a3 – 3a – 2b = 0

  • a3 + 3a – 2b = 0

MCQ
Fill in the Blanks

Solution

If a = sin θ + cos θ, b = sin3 θ + cos3 θ, then a3 – 3a + 2b = 0.

Explanation:

Given, a = sin θ + cos θ

and b = sin3 θ + cos3 θ

So, a3 = sin3 θ + cos3 θ + 3 sin θ cos θ (sin θ + cos θ)

and 3a = 3(sin θ + cos θ)

a3 – 3a = sin3 θ + cos3 θ + 3 sin θ cos θ (sin θ + cos θ) – 3 (sin θ + cos θ)

= sin3 θ + cos3 θ + 3 (sin θ + cos θ) (sin θ cos θ – 1)

= sin3 θ + cos3 θ – 3 (sin θ + cos θ) (1 – sin θ cos θ)

= sin3 θ + cos3 θ – 3(sin θ + cos θ)(sin2 θ + cos2 θ – sin θ . cos θ)   ...[using identity, a3 + b3 = (a + b)(a2 + b2 – ab)]

= sin3 θ + cos3 θ – 3 (sin3 θ + cos3 θ)

= – 2 (sin3 θ + cos3 θ)

`\implies` a3 – 3a = – 2b or a3 – 3a + 2b = 0

shaalaa.com
Trigonometric Equations and Their Solutions
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×