Advertisements
Advertisements
Question
If A = {x/6x2 + x - 15 = 0}
B = {x/2x2 - 5x - 3 = 0}
C = {x/2x2 - x - 3 = 0} then
find (A ∩ B ∩ C)
Solution
A = {x/6x2 + x - 15 = 0}
∴ 6x2 + x - 15 = 0
∴ 6x2 + 10x - 9x - 15 = 0
∴ 2x(3x + 5) - 3(3x + 5) = 0
∴ (3x + 5)(2x - 3) = 0
∴ 3x + 5 = 0 or 2x - 3 = 0
∴ x = `(-5)/3` or x = `3/2`
∴ A = `{(-5)/3,3/2}`
B = {x/2x2 - 5x - 3 = 0}
∴ 2x2 - 5x - 3 = 0
∴ 2x2 - 6x + x - 3 = 0
∴ 2x(x - 3) + 1(x - 3) = 0
∴ (x - 3)(2x + 1) = 0
∴ x - 3 = 0 or 2x + 1 = 0
∴ x = 3 or x = `(-1)/2`
∴ B = `{3,(-1)/2}`
C = {x/2x2 - x - 3 = 0}
∴ 2x2 - x - 3 = 0
∴ 2x2 - 3x + 2x - 3 = 0
∴ x(2x - 3) + 1(2x - 3) = 0
∴ (2x - 3)(x + 1) = 0
∴ 2x - 3 = 0 or x + 1 = 0
∴ x = `3/2` or x = -1
∴ c = `{3/2, -1}`
A ∩ B ∩ C = `{(-5)/3,3/2} ∩ {3,(-1)/2} ∩ {3/2, -1}`
A ∩ B ∩ C = ϕ
APPEARS IN
RELATED QUESTIONS
If A = {x/6x2 + x - 15 = 0}
B = {x/2x2 - 5x - 3 = 0}
C = {x/2x2 - x - 3 = 0} then
find (A ∪ B ∪ C)
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8} and universal set X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then verify the following:
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8} and universal set X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then verify the following:
(A ∪ B)' = (A' ∩ B')
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8} and universal set X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then verify the following:
(A ∩ B)' = A' ∪ B'
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8} and universal set X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then verify the following:
A = (A ∩ B) ∪ (A ∩ B')
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8} and universal set X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then verify the following:
B = (A ∩ B) ∪ (A'∩ B)
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8} and universal set X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then verify the following:
n (A ∪ B) = n(A) + n(B) – n(A ∩ B)
What is set in Python?
List out the set operations supported by python.
Explain the different set operations supported by python with suitable examples.