Advertisements
Advertisements
Question
If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree
Options
1
0
3
2
Solution
2
Explanation:
`|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|`
= `|(1 + 2x + (a^2 + b^2 + c^2)x, (1 + b^2)x, (1 + c^2)x),(1 + 2x + (a^2 + b^2 + c^2)x, 1 = b^2x, (1 + c^2)x),(1 + 2x + (a^2 + b^2 + c^2)x, (1 + b^2)x, 1 + c^2x)|` ......[C1 → C1 + C2 + C3]
= `|(1, (1 + b^2)x, (1 + c^2)x),(1, 1 + b^2x, (1 + c^2)x),(1, (1 + b^2)x, 1 + c^2x)|` ......[∵ a2 + b2 + c2 = – 2]
= `|(1, (1 + b^2)x, (1 + c^2)x),(0, 1 - x, 0),(0, 0, 1 - x)|` ......[R2 → R2 – R1; R3 →R3 – R1]
= `(1 - x)^2`
∴ f(x) is a polynomial of degree 2.