Advertisements
Advertisements
Question
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
Options
`(pi"a")/2`
`(5 pi"a")/2`
`(3 pi "a")/2`
π a
MCQ
Fill in the Blanks
Solution
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = π a.
Explanation:
We have, `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`
Let I = `int_0^"a" sqrt("a - x"/x) "dx"`
put x = a sin2 θ
⇒ dx = a(2 sin θ cos θ)dθ
when, x = 0, θ = 0 and x = a, θ = `pi/2`
∴ I = `int_0^(pi//2) sqrt(("a" - "a"sin^2theta)/("a" sin^2 theta))` (2a sin θ cos θ)dθ
`= 2"a" int_0^(pi//2) (cot theta)(sin theta cos theta) "d" theta`
`= 2"a" int_0^(pi//2) cos^2 theta "d"theta`
`= 2"a" int_0^(pi//2) (1 + cos 2theta)/2 "d"theta`
`= "a" int_0^(pi//2) (1 + cos 2theta)"d"theta`
`= "a"[(theta + (sin 2theta)/2)]_0^(pi//2)`
`= "a" [pi/2 + (sin pi)/2]`
`= (pi "a")/2`
∴ k = π a
shaalaa.com
Is there an error in this question or solution?