Advertisements
Advertisements
Question
If `sqrt("A"^2+"B"^2)` represents the magnitude of resultant of two vectors `(vec"A" + vec"B")` and `(vec"A" - vec"B")`, then the angle between two vectors is ______.
Options
`cos^-1[(2("A"^2-"B"^2))/("A"^2+"B"^2)]`
`cos^-1[-("A"^2-"B"^2)/("A"^2"B"^2)]`
`cos^-1[-("A"^2+"B"^2)/(2("A"^2-"B"^2))]`
`cos^-1[-("A"^2-"B"^2)/("A"^2+"B"^2)]`
Solution
If `sqrt("A"^2+"B"^2)` represents the magnitude of resultant of two vectors `(vec"A" + vec"B")` and `(vec"A" - vec"B")`, then the angle between two vectors is `underlinebb(cos^-1[-(A^2+B^2)/(2(A^2-B^2))])`.
Explanation:
As we know that the magnitude of the resultant of two vectors X and Y,
R2 = X2 + Y2 + 2XY cosθ ...(i)
where, θ is the angle between X and Y.
Putting, X = (A + B)
Y = (A - B)
and R = `sqrt("A"^2 + "B"^2)` In Eq. (i), we get
A2 + B2 = (A + 8)2 + (A - 8)2 + 2(A + 8)(A - 8)cosθ
⇒ A2 + B2 = A2 + B2 + 2AB + A2 + B2 - 2AB + 2(A2 - B2)cosθ
`=> (-("A"^2+"B"^2))/(2("A"^2-"B"^2))=costheta`
we get,
`theta=cos^-1[-("A"^2+"B"^2)/(2("A"^2-"B"^2))]`