English

If ABA2+B2 represents the magnitude of resultant of two vectors AB(A→+B→) and AB(A→-B→), then the angle between two vectors is ______. -

Advertisements
Advertisements

Question

If `sqrt("A"^2+"B"^2)` represents the magnitude of resultant of two vectors `(vec"A" + vec"B")` and `(vec"A" - vec"B")`, then the angle between two vectors is ______.

Options

  • `cos^-1[(2("A"^2-"B"^2))/("A"^2+"B"^2)]`

  • `cos^-1[-("A"^2-"B"^2)/("A"^2"B"^2)]`

  • `cos^-1[-("A"^2+"B"^2)/(2("A"^2-"B"^2))]`

  • `cos^-1[-("A"^2-"B"^2)/("A"^2+"B"^2)]`

MCQ
Fill in the Blanks

Solution

If `sqrt("A"^2+"B"^2)` represents the magnitude of resultant of two vectors `(vec"A" + vec"B")` and `(vec"A" - vec"B")`, then the angle between two vectors is `underlinebb(cos^-1[-(A^2+B^2)/(2(A^2-B^2))])`.

Explanation:

As we know that the magnitude of the resultant of two vectors X and Y,

R2 = X2 + Y2 + 2XY cosθ   ...(i)

where, θ is the angle between X and Y.

Putting, X = (A + B)

Y = (A - B)

and R = `sqrt("A"^2 + "B"^2)`  In Eq. (i), we get

A2 + B2 = (A + 8)2 + (A - 8)2 + 2(A + 8)(A - 8)cosθ

⇒ A2 + B2 = A2 + B2 + 2AB + A2 + B2 - 2AB + 2(A2 - B2)cosθ

`=> (-("A"^2+"B"^2))/(2("A"^2-"B"^2))=costheta`

we get,

`theta=cos^-1[-("A"^2+"B"^2)/(2("A"^2-"B"^2))]`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×