Advertisements
Advertisements
Question
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Sum
Solution
We have,
`(acosθ – bsinθ)^2 + (asinθ + bcosθ)^2`
`= (a^2 cos^2 θ + b^2 sin^2 θ – 2ab sinθcosθ) + (a^2 sin^2 θ + b^2 cos^2θ + 2ab sinθcosθ)`
`= a^2 (cos^2 θ + sin^2 θ) + b^2 (sin^2 θ + cos^2 θ)`
`= a^2 + b^2`
`⇒ c^2 + (asinθ + bcosθ)^2 = a^2 + b^2 [∵ acosθ – bsinθ = c]`
`⇒ (asinθ + bcosθ)^2 = a^2 + b^2 – c^2`
`⇒ asinθ + bcosθ = \pm \sqrt{a^{2}+b^{2}-c^{2}}`
shaalaa.com
Is there an error in this question or solution?