Advertisements
Advertisements
Question
If α and β are the distinct roots of the equation `x^2 + (3)^(1/4)x + 3^(1/2)` = 0, then the value of α96(α12 – 1) + β96(β12 – 1) is equal to ______.
Options
56 × 325
52 × 324
56 × 324
28 × 325
Solution
If α and β are the distinct roots of the equation `x^2 + (3)^(1/4)x + 3^(1/2)` = 0, then the value of α96(α12 – 1) + β96(β12 – 1) is equal to `underlinebb(52 xx 3^24)`.
Explanation:
Given `x^2 + (3)^(1/4)x + 3^(1/2)` = 0
⇒ `x^2 + sqrt(3) = -3^(1/4)x`
Squaring both sides,
⇒ `x^4 + 2sqrt(3)x^2 + 3 = sqrt(3)x^2`
⇒ `x^4 + sqrt(3)x^2 + 3` = 0
⇒ x4 + 3 = `-sqrt(3)x^2`
Now squaring both the sides again,
⇒ x8 + 6x4 + 9 = 3x4
⇒ x8 + 3x4 + 9 = 0
Put x = α, α8 = –9α – 3α4
∴ α12 = –9α4 – 3α8 = –9α4 –3(–9 – 3α4) = 27
Similarly β12 = 27
⇒ α96(α12 – 1) + β96(β12 – 1)
= (27)8 × 26 + (27)8 × 26 = 52 × (27)8
= 52 × 324