English

If α and β are the distinct roots of the equation x2+(3)14x+312 = 0, then the value of α96(α12 – 1) + β96(β12 – 1) is equal to ______. -

Advertisements
Advertisements

Question

If α and β are the distinct roots of the equation `x^2 + (3)^(1/4)x + 3^(1/2)` = 0, then the value of α9612 – 1) + β9612 – 1) is equal to ______.

Options

  • 56 × 325

  • 52 × 324

  • 56 × 324

  • 28 × 325

MCQ
Fill in the Blanks

Solution

If α and β are the distinct roots of the equation `x^2 + (3)^(1/4)x + 3^(1/2)` = 0, then the value of α9612 – 1) + β9612 – 1) is equal to `underlinebb(52 xx 3^24)`.

Explanation:

Given `x^2 + (3)^(1/4)x + 3^(1/2)` = 0

⇒ `x^2 + sqrt(3) = -3^(1/4)x`

Squaring both sides,

⇒ `x^4 + 2sqrt(3)x^2 + 3 = sqrt(3)x^2`

⇒ `x^4 + sqrt(3)x^2 + 3` = 0

⇒ x4 + 3 = `-sqrt(3)x^2`

Now squaring both the sides again,

⇒ x8 + 6x4 + 9 = 3x4

⇒ x8 + 3x4 + 9 = 0

Put x = α, α8 = –9α – 3α4

∴ α12 = –9α4 – 3α8 = –9α4 –3(–9 – 3α4) = 27

Similarly β12 = 27

⇒ α9612 – 1) + β9612 – 1)

= (27)8 × 26 + (27)8 × 26 = 52 × (27)8

= 52 × 324

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×