Advertisements
Advertisements
Question
If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)] "and" (A + B)(A-B) = A^2 - B^2, "Find" a "and" b`
Sum
Solution
`(A + B)(A-B) = A^2 - B^2`
∴ `A^2 - AB + BA - B^2 = A^2 - B^2`
∴ `-AB + BA = 0`
∴ `AB = BA`
∴`[(-3,2),(2,4)][(1,a),(b,0)] = [(1,a),(b,0)][(-3,2),(2,4)]`
∴`[(-3+2b, -3a+0),(2+4b,2a+0)]=[(-3+2a,2+4a),(-3b+0,2b+0)]`
∴`[(-3+2b,-3a),(2+4b,2a)]=[(-3+2a,2+4a),(-3b, 2b)]`
By equality of matrices
`-3 + 2b = -3 + 2a` ...(i)
`-3a = 2+4a` ...(ii)
`2+4b = -3b` ...(iii)
`2a = 2b` ...(iv)
From (ii), `7a = -2 ∴ a=-2/7`
From (iii), `7b = -2 ∴ b=-2/7`
These values of `a` and `b` also satisfy equations (i) and (iv).
Hence, `a=-2/7 "and" b=-2/7`
shaalaa.com
Is there an error in this question or solution?