Advertisements
Advertisements
Question
If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is
Options
`a + b`
`b - a`
`a/b`
`b/a`
Solution
`b/a`
Explanation:
Given `alpha, beta` are different values of x satisfying the equation a cos x + b sin x + c,
∴ a cos α + b sin α = c .......(i)
a cos β + b sin β = c ......(ii)
From (i) and (ii)
`a cos alpha + b sin alpha = alpha cos beta + b sin beta`
⇒ `a(cos alpha - cos beta) + b(sin alpha - sin beta)` = 0
⇒ `a(- 2 sin (alpha + beta)/2 . sin (alpha - beta)/2) + b(2 cos (alpha + beta)/2 . sin (alpha - beta)/2)` = 0
⇒ `2sin ((alpha - beta)/2) [b cos (alpha + beta)/2 - a sin (alpha + beta)/2]` = 0
⇒ `sin (alpha - beta)/2 ≠ 0` .......[∴ α ≠ β]
∴ `b cos (alpha + beta)/2 - a sin (alpha + beta)/2` = 0
∴ `tan (alpha + beta)/2 = b/a`