Advertisements
Advertisements
Question
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
Options
`(ac)/(a^2 + c^2)`
`(2ac)/(a - c)`
`(2ac)/(a^2 - c^2)`
`(a + c)/(1 - ac)`
Solution
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = `underlinebb((2ac)/(a^2 - c^2))`.
Explanation:
Let tan–1 x = α and tan–1 y = β
`\implies` tan α = x, tan β = y
The given system of equations is
a tan α + b sec α = c and a tan β + b sec β = c
∴ α and β are the roots of a tan θ + b sec θ = c
`\implies` (b sec θ)2 = (c – a tan θ)2
`\implies` (a2 – b2) tan2 θ – 2ac tan θ + c2 – b2 = 0
`\implies` tan α + tan β = `(2ac)/(a^2 - b^2)` and
tan α tan β = `(c^2 - b^2)/(a^2 - b^2)`
`\implies` x + y = `(2ac)/(a^2 - b^2)` and xy = `(c^2 - b^2)/(a^2 - b^2)`
`\implies` 1 – xy = `(a^2 - c^2)/(a^2 - b^2)`
`\implies` `(x + y)/(1 - xy) = (2ac)/(a^2 - c^2)`