Advertisements
Advertisements
Question
If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.
Options
1
2
`1/3`
`1/2`
MCQ
Fill in the Blanks
Solution
If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is `underlinebb(1/2)`.
Explanation:
We have, cos A = cos B cos C
By triangle property, A + B + C = π
`\implies` B + C = π – A
∴ cos(B + C) = cos(π – A)
`\implies` cos(B + C) = – cos A
`\implies` cos B cos C – sin B sin C = – cos B cos C ...[∵ given, cos A = cos B cos C]
`\implies` 2 cos B cos C = sin B sin C
`\implies (cos B cos C)/(sin B sin C) = 1/2`
`\implies` cot B cot C = `1/2`
shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
Is there an error in this question or solution?