Advertisements
Advertisements
Question
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0. then show that sin 3α + sin 3β + sin 3γ = 3 sin(α + β + γ)
Solution
Let a = cos α + i sin α = eiα
b = cos β + i sin β = eiβ
c = cos γ + i sin γ = eiγ
a + b + c = (cos α + cos β + cos γ) + i (sin α + sin β + sin γ)
⇒ a + b + c = 0 + i 0
⇒ a + b + c = 0
If a + b + c = 0 then a3 + b3 + c3 = 3abc
`("e"^("i"alpha))^3 + ("e"^("i"beta))^3 + ("e"^("i"γ))^3 = 3"e"^("i"alpha) "e"^("i"beta) "e"^("i"γ)`
`"e"^("i"3alpha) + "e"^("i"3beta) + "e"^("i"3γ) = 3"e"^("i"(alpha + beta + γ)`
(cos 3α + i sin 3α + cos 3β + i sin 3β + cos 3γ + i sin 3γ) = 3[cos (α + β + γ) + i sin (α + β + γ)]
(cos 3α + cos 3β + cos 3γ) + i (sin 3α + sin 3β + sin 3γ) = 3 cos(α + β + γ) + i 3sin(α + β + γ)
Equating real and Imaginary parts
sin 3α + sin 3β + sin 3γ = 3 sin (α + β + γ)
APPEARS IN
RELATED QUESTIONS
Write in polar form of the following complex numbers
`2 + "i" 2sqrt(3)`
Write in polar form of the following complex numbers
`3 - "i"sqrt(3)`
Write in polar form of the following complex numbers
– 2 – i2
Find the rectangular form of the complex numbers
`(cos pi/6 "i" sin pi/6)(cos pi/12 + "i" sin pi/12)`
Find the rectangular form of the complex numbers
`(cos pi/6 - "i" sin pi/6)/(2(cos pi/3 + "i" sin pi/3))`
If (x1 + iy1)(x2 + iy2)(x3 + iy3) ... (xn + iyn) = a + ib, show that `sum_("r" = 1)^"n" tan^-1 (y_"r"/x_"r") = tan^-1 ("b"/"a") + 2"k"pi, "k" ∈ "z"`
If `(1 + z)/(1 - z)` = cos 2θ + i sin 2θ, show that z = i tan θ
If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, show that cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ)
If z = x + iy and arg `((z - "i")/(z + 2)) = pi/4`, show that x2 + y3 + 3x – 3y + 2 = 0
Choose the correct alternative:
The solution of the equation |z| – z = 1 + 2i is
Choose the correct alternative:
If `(z - 1)/(z + 1)` purely imaginary then |z| is
Choose the correct alternative:
The principal argument of `3/(-1 + "i")` is
Choose the correct alternative:
The principal argument of (sin 40° + i cos 40°)5 is