Advertisements
Advertisements
Question
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Sum
Solution
We have,
cosθ + sinθ = cosθ
`⇒ (cosθ + sinθ)2 = 2 cos^2 θ`
`⇒ cos^2 θ + sin^2 θ + 2 cosθsinθ = 2 cos^2 θ`
`⇒ cos^2 θ – 2cosθ sinθ = sin2θ`
`⇒ cos^2 θ – 2cosθsinθ + sin^2 θ = 2sin^2 θ`
`⇒ (cosθ – sinθ)^2 = 2sin^2 θ`
`⇒ cosθ – sinθ = √2 sinθ`
shaalaa.com
Is there an error in this question or solution?