Advertisements
Advertisements
Question
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`
Sum
Solution
`cos((x^2 - y^2)/(x^2 + y^2))` = log a
∴ `(x^2 - y^2)/(x^2 + y^2)` = cos–1(log a)
∴ Let `(x^2 - y^2)/(x^2 + y^2)` = k (constant)
∴ kx2 + ky2 = x2 – y2
∴ y2(k + 1) = x2(1 – k)
∴ `y^2/x^2 = (1 - k)/(k + 1)`
∴ `y/x = sqrt((1 - k)/(1 + k)`
Differentiating w.r.t.x,
`(x dy/dx - y)/x^2` = 0
∴ `x dy/dx - y` = 0
∴ `x dy/dx` = y
∴ `dy/dx = y/x`
Hence proved.
shaalaa.com
Differentiation
Is there an error in this question or solution?