Advertisements
Advertisements
Question
If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.
Options
`sqrt("p"/"q")`
`sqrt("q"/"p")`
`sqrt("pq")`
pq
Solution
If cosecθ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to `underlinebb(sqrt("q"/"p"))`.
Explanation:
cosecθ = `("p" + 1)/("p" - q)`, sinθ = `("p" - "q")/("p" + "q")`
cosθ = ±`sqrt(1-sin^2theta)=sqrt(1-(("p"-"q")/("p"+"q"))^2)=(2sqrt"pq")/(("p"+"q"))`
`|cot(pi/4+theta/2)|=|("cot"pi/4"cot"theta/2-1)/("cot"pi/4+"cot"theta/2)|=|("cot"theta/2-1)/("cot"theta/2+1)|`
= `|("cot"theta/2-"sin"theta/2)/("cos"theta/2+"sin"theta/2)|`
on rationalizing denominator, we get
`|(("cos"theta/2-"sin"theta/2)/("cos"theta/2+"sin"theta/2))(("cos"theta/2"sin"theta/2)/("cos"theta/2+"sin"theta/2))|`
= `|costheta/("sin"^2theta/2+"cos"^2theta/2+2"sin"theta/2"cos"theta/2)|`
= `|costheta/(1+sintheta)|=|(2sqrt"pq"//("p"+"q"))/(1+(("p"-"q"))/("p"+ "q"))|`
= `sqrt"pq"/"p"`
= `sqrt("q"/"p")`