English

If d1, d2 (d2 > d1) be the diameters of two concentric circles and c be the length of a chord of a circle which is tangent to the other circle, then ______ -

Advertisements
Advertisements

Question

If d1, d2 (d2 > d1) be the diameters of two concentric circles and c be the length of a chord of a circle which is tangent to the other circle, then ______ 

Options

  • d22 = c2 + d12

  • d22 = c2 - d12

  • d12 = c2 + d22

  • d12 = c2 - d22

MCQ
Fill in the Blanks

Solution

If d1, d2 (d2 > d1) be the diameters of two concentric circles and c be the length of a chord of a circle that is tangent to the other circle, then d22 = c2 + d12.

Explanation:

Let AB be a chord of a circle that touches the other circle at C. Then ΔOCB is the right triangle.

By Pythagoras theorem

OC2 + CB2 = OB2

⇒ `(1/2d_1)^2 + (1/2c)^2 = (1/2d_2)^2`

⇒ d22 = c2 + d12

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×