Advertisements
Advertisements
Question
If d1, d2 (d2 > d1) be the diameters of two concentric circles and c be the length of a chord of a circle which is tangent to the other circle, then ______
Options
d22 = c2 + d12
d22 = c2 - d12
d12 = c2 + d22
d12 = c2 - d22
MCQ
Fill in the Blanks
Solution
If d1, d2 (d2 > d1) be the diameters of two concentric circles and c be the length of a chord of a circle that is tangent to the other circle, then d22 = c2 + d12.
Explanation:
Let AB be a chord of a circle that touches the other circle at C. Then ΔOCB is the right triangle.
By Pythagoras theorem
OC2 + CB2 = OB2
⇒ `(1/2d_1)^2 + (1/2c)^2 = (1/2d_2)^2`
⇒ d22 = c2 + d12
shaalaa.com
Is there an error in this question or solution?