Advertisements
Advertisements
Question
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
Options
`x^4 + 1/x^3 - 129/8`
`x^3 + 1/x^4 + 129/8`
`x^4 + 1/x^3 + 129/8`
`x^3 + 1/x^4 - 129/8`
MCQ
Solution
`x^4 + 1/x^3 - 129/8`
Explanation:
`d/(dx) f(x) = 4x^3 - 3/x^4`
⇒ `f(x) = int(4x^3 - 3/x^4) dx`
= `4int x^3 dx - 3 int x^-4 dx`
= `4 * x^4/4 - 3 * x^(-4 + 1)/(-4 + 1) + c`
= `x^4 - (3x^(-3))/(-3) + c`
= `x^4 + 1/x^3 + c` .......(i)
But `f(2)` = 0
⇒ `x^4 + 1/x^3 + c` = 0 or `16 + 1/8 + c` = 0
`c = - 129/8`
Putting `c = - 129/8` = in (i)
∴ `f(x) = x^4 + 1/x^3 - 129/8`
shaalaa.com
Is there an error in this question or solution?