Advertisements
Advertisements
Question
If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?
Options
`pi/2 - pi/2 log 2`
`- pi/2 log 2`
`pi/2 log 2`
`pi/2 + pi/2 log2`
MCQ
Solution
`pi/2 log 2`
Explanation:
`int_0^(pi/2) log (cosec x)`dx = `int_0^(pi/2) log (sec x)`dx ....`[int_0^"a" f(x) "dx" = int_0^"a" "f"("a - x") "dx"]`
`= int_0^(pi/2) log (1/(cos x))`dx
`= int_0^(pi/2) [log 1 - log(cos x)]` dx
`= int_0^(pi/2) log(cos x)`dx
`= pi/2 log 2`
shaalaa.com
Is there an error in this question or solution?